"宽兼带顶亭半导鉢器件" (麦) 置)

·特邀综述·

GaN 基增强型 HEMT 器件的研究进展*

黄火林,孙楠 (大连理工大学光电工程与仪器科学学院,辽宁大连116024)

摘 要:随着电力转换系统功率密度和工作频率的不断提高,需要开发性能优于传统半导体的功率器件。作为第三代半导体材料的典型代表,氮化镓 (GaN) 被认为是提高大功率电力系统转换效率的新一代功率器件的主要候选材料。在操作类型方面,增强型 (也称为常关型)器件具有安全、能简化电路设计以及更优的电路拓扑设计等优势,在行业应用中更具吸引力。总结并对比了目前国际上主流的 GaN 基增强型器件的结构和制备工艺,着重介绍了基于栅凹槽结构的功率器件技术,特别是栅槽刻蚀后的界面处理、栅介质层的优化技术。围绕器件的关键指标,总结了材料外延结构、欧姆接触、场板以及钝化工艺对器件性能的影响,提出了未来可能的技术方案。

关键词: GaN; 高电子迁移率晶体管; 增强型器件; 栅槽结构

中图分类号: TN386.6 文献标志码: A 文章编号: 1681-1070 (2023) 01-010108 DOI: 10.16257/j.cnki.1681-1070.2023.0046

中文引用格式: 黄火林, 孙楠. GaN 基增强型 HEMT 器件的研究进展[J]. 电子与封装, 2023, 23(1): 010108. 英文引用格式: HUANG Huolin, SUN Nan. Research progress of GaN-based enhanced HEMT devices[J]. Electronics & Packaging, 2023, 23(1): 010108.

Research Progress of GaN-Based Enhanced HEMT Devices HUANG Huolin, SUN Nan (School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China)

Abstract: With the continuous improvement of power density and operating frequency of power conversion systems, it is necessary to develop the power devices with better performance than the conventional semiconductors. As a typical representative of third-generation semiconductor materials, gallium nitride (GaN) is considered as the main candidate for the next-generation power devices to improve the conversion efficiency of high-power power systems. In terms of operation type, enhanced (also known as normally off) devices have the advantages of safety, ability to simplify circuit design and better circuit topology design, making them more attractive for industry applications. The structure and fabrication process of the current international mainstream GaN-based enhanced devices are summarized and compared. The technology of power devices based on the gate groove structure is emphatically introduced, especially the interface treatment after gate groove etching, and the optimization technology of the gate dielectric layer. The influences of material epitaxial structure, ohmic contact, field plate and passivation process on device performance are summarized around the key indicators of the device, and possible technical solutions are proposed.

Keywords: GaN; high electron mobility transistor; enhanced device; gate groove structure

^{*}基金项目:国家自然科学基金(61971090);辽宁省应用基础研究计划(2022JH2/101300259);大连市科技创新基金 (2022JJ12GX011)

收稿日期:2022-10-31

E-mail: 黄火林 <u>hlhuang@dlut.edu.cn</u>

1 引言

近年来,全球变暖,环境污染加剧,全球能源危机 日益严重,为了缓解节能减排的压力,工业界要求尽 可能减小电能转化过程中的损耗。当下的中美贸易争 端以及发达国家对我国的技术封锁迫使我国需尽快 发展自有的半导体技术,这也是《中国制造 2025》"、十 四五"规划和 2035 年远景目标纲要等国家战略规划的 核心内容之一。这些时代背景为具有高效节能特点的 第三代半导体材料提供了快速发展的良机。

从材料选择角度来看,以第一代半导体材料硅 (Si)为代表的绝缘栅双极晶体管 IGBT)和超结器件 的发展已经接近其材料极限,这就要求寻找具有更宽 带隙等特性的新一代半导体材料。目前,在第三代半 导体材料中,氮化镓 GaN)和碳化硅 SiC)的发展较为 成熟,且材料本身具有大的临界击穿电场、耐高温和 抗辐照等特点,所以更适合制作电力电子器件1-3。目 前,SiC在高压高于1200 V)市场占据明显优势,但在 功率转换和高频工作方面,GaN 具有更加明显的优 势。GaN转换器的低损耗归因于其低的开关损耗,这 是由于 GaN 相比于 SiC 具有更好的电子传输能力。沿 Ga 面方向外延生长的结构存在较强的自发极化和压 电极化效应,这会导致在 GaN 材料的异质结结构,典 型如 AlGaN/GaN) 界面处产生高浓度的二维电子气 (2DEG),因此 GaN 器件具有更低的导通电阻。通过对 比 Si、砷化镓 GaAs)、SiC、GaN 半导体材料的综合性 能 即约翰逊优值),可以发现 GaN 材料的整体性能相 对较高。因此,在相同耐压等级下,GaN 材料更适合制 作高效的电力电子器件,特别是横向结构的高电子迁 移率晶体管 HEMT),其导通电阻比 Si 器件的导通电 阻低 1~2 个数量级,与同为第三代半导体材料的 SiC 器件相比,其导通电阻减小1/2~1/3[45]。

从器件结构看,GaN 器件分为纵向和横向结构。 纵向结构的器件需要用到 GaN 自支撑衬底,而目前来 看,GaN 自支撑外延片的成本较高,且 GaN 自支撑衬 底的外延片尺寸较小,这就使得单个器件的成本更 高。同时 GaN 纵向结构的器件并没有利用到 GaN 材 料最大的优势——2DEG,而横向结构的器件则能很 好地利用到这一特点。横向器件从开关类型看,分为 耗尽型(常开型,D-mode)和增强型(常关型,E-mode) 器件。由于 AlGaN/GaN 界面会产生高电子浓度(约 10¹³ cm⁻²·eV⁻¹)、高迁移率[约 2000 cm²/(V·s)]的 2DEG,传统的 GaN HEMT 是耗尽型的,即器件栅极在 零偏压下沟道中仍然存在高浓度的 2DEG,使器件处 于开启状态。而增强型器件在栅极零偏压时可以耗尽 栅下沟道中的 2DEG,使器件处于关断状态。增强型器 件也因此具有安全、节能和能简化电路设计等方面的 优势,是未来功率器件的重要发展方向。

从市场应用角度来看,以耐受电压 600~1200 V 为 界,低于 600 V 的市场以 GaN 为主,主要面向消费类 电子领域,这是目前 GaN 材料切入市场的最主要突破 口。600~1200 V 这一区间是 GaN 与 SiC 共存的领域, 其主要应用在电动汽车 EV) 与混合动力汽车 HEV) 的转换器以及可再生能源的逆变器中。高于1200 V的 市场以 SiC 为主,未来 GaN 材料的晶体质量若能进一 步提高,体材料的缺陷密度进一步减小,或纵向结构 的 GaN 器件技术成熟度提高,其也会在高电压市场中 展现出更强大的竞争力。到目前为止,GaN 材料通常 通过金属有机化学气相沉积 MOCVD) 法在 Si、蓝宝 石或 SiC 的衬底上生长。对于电力电子领域的应用,在 Si 衬底上制造的 GaN HEMT 最为常见,这是由于其具 有成本效益较高的大尺寸晶圆和良好的导电性能。因 此从成本角度考虑,大面积 Si 基 GaN 材料更具优势。 此外,Si 基 GaN 器件还可以与成熟的 Si 金属氧化物 半导体 MOS) 工艺流程兼容, 以进一步降低大规模生 产的加工成本。GaN HEMT 作为平面器件,制作工艺 相对简单,原材料和基础工艺可以依托我国现有庞大 的发光二极管 LED)照明产业,因此更容易实现大规 模产业化。实际上,Si 基 GaN 器件目前已在消费类电 子、车载电子市场中异军突起。

综上所述,从材料、器件结构、市场几个方面考虑, GaN 增强型 HEMT 器件具有重要的战略研究意义。从 基础科研到产业化,有若干个重要指标可以评估 GaN 增强型 HEMT 器件的性能,典型的有击穿电压 V_B、阈 值电压 V_{th}、开态电阻 R_{on}、饱和电流密度 I_{DS}、栅耐压、阈 值电压滞回等。本文回顾了一系列增强型器件的实现 方案,着重介绍了基于栅凹槽结构的功率器件技术方 案以及若干重要工艺,并提出了未来可能的技术方案。

2 GaN基HEMT 功率器件的技术方案与进展

以 AlGaN/GaN 异质结材料为基础的 HEMT 自 20 世纪 90 年代末期就受到了研究者们的青睐,到了 21 世纪初期,该类型晶体管已经在射频器件领域得到 应用,并且在当下 5G 通讯领域中被广泛使用。国内高 校自 2010 年起掀起 GaN 基功率器件的研究热潮。近年来,随着国内外多家企业推出 200 V/600 V/650 V 的GaN 产品,GaN 功率器件的研发也进入了快速发展阶段。

2.1 耗尽型 HEMT 器件

由于耗尽型 HEMT 器件的栅极无需复杂的特殊 加工工艺,所以器件技术成熟较早,随着制作工艺的 不断完善,器件的导通电流、击穿电压、特征电阻等关 键参数已经取得较为理想的结果,GaN D-mode HEMT 器件结构如图 1 所示。目前,耗尽型 GaN HEMT 在产 业界面临的可靠性问题主要有电流崩塌、硬开关模式 下阈值电压的漂移等,这些可靠性问题与场板的设 计、栅介质层的选择、GaN 缓冲层的设计和钝化层材 料的选择等有关,需要对器件的制作工艺细节进一步 优化,以提高器件的可靠性。

图 1 GaN D-mode HEMT 器件结构

耗尽型与增强型器件的区别在于器件的阈值电 压是否大于 0 V,这主要与 AlGaN/GaN 异质结界面产 生的高电子浓度、高迁移率的 2DEG 有关。由于耗尽 型器件在实际应用中的静态功耗与安全问题,增强型 器件更适用于功率电子领域,而器件的栅极工艺与结 构的设计是 HEMT 器件能否实现增强型操作的关键。

2.2 增强型 HEMT 器件

实现增强型 GaN HEMT 器件操作的方法有几种, 主要是基于耗尽 / 减弱 AlGaN/GaN 异质结界面处的 极化电荷来实现的。几种实现增强型操作的主流方案 包括凹栅结构、氟化栅结构和 p-GaN 插入层结构。除 此之外,共源共栅级联(cascode)结构、薄势垒结构 (UTB)和纵向短沟道结构(VG-HEMT)也可以实现器 件的增强型操作。几种实现增强型操作的器件结构如 图 2 所示。

2.2.1 基于凹栅结构的增强型 HEMT 器件

凹栅结构的增强型 HEMT 器件的特点在于栅区 势全层的刻蚀,一般采用干法刻蚀或湿法腐蚀技术将 栅极区域的 AlGaN 势全层刻蚀掉,通过减弱异质结的 极化效应,使得栅区下方沟道中的 2DEG 浓度降低到 一定值,使得在栅极电压为 0 V 时沟道被夹断。一般情 况下,在栅极金属与 AlGaN 势垒层之间会生长一层绝 缘的介质层来确保栅极泄漏电流在器件工作时可以 维持在相对较低的范围内,同时还可以提高器件栅极 耐压,使器件栅极驱动电压范围变大。该结构器件的 优势在于其栅极驱动电路较为简单,并且可以通过调 整栅介质层的厚度来调节器件的栅耐压。基于凹栅结 构器件阈值电压的提升与导通电阻的降低存在相互 制约的关系,如何平衡 2 个参数之间的关系是该结构

器件所关注的重点问题之一。

栅区势垒层的刻蚀往往会引入界面态,对器件性 能造成不良影响,同时刻蚀精度的控制也会影响器件 的阈值电压和导通电阻。为解决这一问题,国内外的 研究者们提出了很多的方案。LIN 等人使用 650 ℃高 温热氧化技术将栅区势垒层表面的 AlGaN 全部氧化, 然后将样品浸泡在 KOH 溶液中, 腐蚀掉被氧化的 AlGaN 层¹⁰。该技术利用了 GaN 和 AlGaN 易氧化的特 性,其优势在于可以确保刚好将 AlGaN 势垒层刻蚀完 全而不会过度刻蚀,且栅区界面的损伤较小,其缺点 在于速率较慢且不适合应用于大规模生产。北京大学 的研究者使用先氧化再湿法腐蚀的方案制作了具有 凹栅结构的增强型 HEMT 器件,由于栅区沟道的刻蚀 损伤小,器件的导通电阻很低,同时器件的阈值电压 达到2V以上,耐压超过1000 V^[7-8]。日本福井大学的 研究者报道了一种先刻蚀势垒层、再二次生长 AlGaN 的技术,采用该方案的器件阈值电压高达 2.3 V,饱和 电流达 425 mA/mm,并且展现出比较大的潜力¹⁹。中山 大学的研究者在栅区外二次生长 AlGaN 势垒层,制作 了增强型 HEMT 器件,由于该技术沟道损伤小,器件 获得了 3.5 V 的阈值电压和 550 mA/mm 的饱和电 流[10-11]。韩国的 IM 等人提出了利用四甲基氢氧化铵做 栅区腐蚀溶液的技术方案,获得的器件阈值电压可达 3.5 V^[12]。美国弗州理工大学的 MA 等人采用栅区分区 域刻蚀的技术,使栅区形成多孔,Tri-gate结构,在实现 增强型器件的基础上减少了栅区的刻蚀面积,同时栅 区的刻蚀区域还能对非刻蚀区域进行耗尽,在保证输 出电流的情况下减少栅极边缘高电场的分布区域,在 栅极零偏置的情况下达到 2000 V 的击穿电压^[13]。大连 理工大学 HUANG 团队在 GaN 凹栅增强型 HEMT 器 件工艺和可靠性研究方面同样开展了大量的工作,研 制的 6 英寸 Si 基 GaN 器件获得了 2.5 V 的阈值电压 和 600~900 V 的耐压,并且从理论和实验层面揭示了 器件缺陷态分布、应力下的电学参数模型和演变规律。

凹栅结构一般都会使用金属-绝缘体-半导体 (MIS)/金属-氧化物-半导体 MOS)结构,这能够使器 件栅极具有更大的安全工作范围和更低的泄漏电流。 然而 MIS/MOS 结构的器件阈值电压的稳定性较差, 这主要是由介质层/半导体界面的电荷和陷阱引起 的。有报道称在氧化物/三族氮化物界面处的界面陷 阱密度 D_{ii}较高,这会导致栅泄漏电流的增加和阈值电 压的不稳定。因此,为追求高性能的 GaN HEMT 器件, 栅槽的界面态与介质层的质量是重要的指标。

在栅区势垒层的减薄过程中,虽然对减薄工艺的 优化可以减少对界面的损伤,但仍不可避免地会引入 界面态,这对器件阈值电压和 2DEG 的迁移率都会造 成不良的影响,在栅槽形成后引入界面处理工艺可以 降低界面态。为降低界面态,对界面的处理方案主要 分为氧化和氮化2种。西安电子科技大学的研究者使 用 N₂O 氧化栅区刻蚀后的界面,得到的器件阈值电压 为 1.5 V、亚阈值摆幅 SS) 为 70 mV/dec^[14]。北京大学的 研究者报道了在通过低压化学气相沉积 LPCVD)法 生长氮化硅 Si₃N₄)之前使用 N₂O 处理栅区刻蚀后的 界面,抑制在 LPCVD 生长过程中的高温退化,制作的 器件界面态降低,其饱和输出电流提高了3倍,达到 607 mA/mm,在输出电流为 0.1 mA/mm 处提取的阈值 电压为 1.2 V,器件击穿电压达到 1348 V^[15]。香港科技 大学的研究者使用等离子体增强化学气相沉积 (PECVD)法制作 Si₃N₄和 LPCVD-Si₃N₄的组合,利用 PECVD 生长温度较低的特性将高可靠性的 LPCVD-Si₃N₄与凹栅结构相结合,制作出了高稳定性和高可靠 性的增强型器件,制备的器件阈值电压为 2.37 V,同时 器件具有高的热稳定性、长时间依赖的栅介质层击穿 寿命^[10]。南方科技大学的研究者将凹栅结构的 GaN 禁 带宽度 E,约为 3.4 eV) 沟道转换为晶体 GaON E,≈ 4.1 eV)层,来提高器件反向偏压应力下阈值电压的稳 定性和栅可靠性。结晶的 GaON 是通过将刻蚀后的栅 槽进行氧化、然后在 LPCVD 腔体中进行 780 ℃ NH₃ 氛围的原位退火形成的。GaON 晶体与 GaN 之间的价 带偏移量大约为0.6 eV,这会在栅周围形成一个由空 穴组成的势垒,该势垒能够阻止空穴向栅极一侧流动, 从而降低空穴诱导的栅介质层的退化[17-18]。香港科技大 学的研究者使用低损伤的 NH₃-Ar-N₂原位等离子体预 处理 RPP),得到了高质量的 Al₂O(AlN)/GaN 界面, 使用 C-V 表征技术提取到低的 D_{it}(10¹²~10¹³ cm⁻²·eV⁻¹)。 此方案中 NH-Ar 等离子体预处理的目的是去除表面 氧化物,N₂等离子体预处理的目的是在 GaN 表面形 成氮化层[19]。

2.2.2 基于 p-GaN 插入层结构的增强型 HEMT 器件

p-GaN 插入层结构同样是一种实现 HEMT 器件 增强型操作的方案,这种结构的优势在于可以排除栅 介质层对器件的影响,而其典型劣势源于 p-GaN 和下 方 AlGaN 形成的 p-n 结,该 p-n 结在栅极施加正电压 超过某一阈值时会正向开启,进而导致栅极电流增 加,造成器件失效。因此需要对该结构的栅极驱动电 路设计额外的保护电路,防止栅极电流过大。此外,目 前 p-GaN 层仍然需要通过向 GaN 中掺入 Mg 来实现 p 型掺杂,其本身需要很高的激活温度,但激活率很 低,晶格损伤极为严重。在后续的器件工艺加工中,一 旦器件暴露在高温 高于 500 ℃)的空气中,Mg 原子 会和空气中的 H 原子形成 Mg—H 键,降低 p-GaN 层 的空穴浓度,从而影响器件的阈值电压。此外,栅极区 域外的 p-GaN 需要被刻蚀掉,因此其他区域的 AlGaN 势垒层上表面可能会引入刻蚀损伤,降低 2DEG 浓 度,同时栅区下方 p-GaN 的侧壁也可能成为漏电途径。

p-GaN HEMT 的发展已经超过十年。2007年, UEMOTO 等人首次提出了 p 型栅极 HEMT 的概 念,并且制作出阈值电压为1.0V、导通电流约为 200 mA/mm 的晶体管^[20]。该技术的势垒层厚度一直是 研究者们关注的重点。一方面,该类器件需要一定厚 度的 AlGaN 势垒层去维持 2DEG 的浓度;另一方面, AlGaN 势垒层太厚又会拉低器件的阈值电压。从近些 年的研究成果来看,AlGaN 势垒层厚度一般需要维持 在 10~15 nm, Al 组分维持在 15%~20%, 这样易于形成 增强型器件。此外, EFTHYMIOU 等人进一步研究发 现,p-GaN 层的掺杂浓度在超过 10¹⁸ cm-3 后才可以有 效地对栅区进行耗尽。另一个值得关注的点是栅极金 属功函数和器件阈值电压之间的关系,使用肖特基结 制作栅极更易于获得更高的阈值电压和更低的栅极 漏电流。GRECO等人发现,使用传统低功函数的 Ti/Al 金属叠层作为栅极电极材料,其阈值电压可以达 到1.5 V,但随着器件在不同温度下的退火,其肖特基 势垒高度在逐步降低,并且会出现阈值电压负漂、栅 极泄漏电流增大等现象。为了避免栅极势垒高度的退 化,应该在器件后续的加工工艺中避免高温环境四。 POSTHUMA 等人报道了利用 TiN 制作的器件栅电 极,其阈值电压可以达到 2.1 V^[22]。而 LUKENS 等人报 道了一种 先栅"的自对准工艺,使用金属 Mo 同时作 为刻蚀掩模层和栅极金属,实验结果表明,该结构在 经过 825 ℃的高温退火后,势垒没有出现退化现象四。 2.2.3 基于 cascode 结构的增强型器件

级联技术是实现增强型操作的一个重要技术路 线,其将一个 Si MOS 管与一个耗尽型的 GaN 基 HEMT 采用共源共栅的方式连接。器件整体外接的 D 为 HEMT 的漏极,外接的 S 为 MOS 管的源极与 HEMT 的栅极,外接的 G 为 MOS 管的栅极,MOS 管 的漏极与 HEMT 的源极相接。当 G 端施加电压大于 MOS 管的阈值电压时,MOS 管导通,其源、漏 2 端产 生较大电流,并且 2 端的压降可以忽略。同时,这意味 着 HEMT 的源、栅 2 端电压也近似相等,即栅压为 0 V,耗尽型 HEMT 导通。因此任何施加在器件 D 端的 电信号都会产生一个电流,通过由 HEMT 与 MOS 管 串联的电路,器件整体导通。同理,当 G 端施加电压小 于 MOS 管的阈值电压时,MOS 管关断,其源、漏 2 端 产生较大压降,HEMT 的源、栅 2 端的电压差同样明 显,HEMT 中的栅压小于阈值电压,且小于 0 V,耗尽 型 HEMT 关断,HEMT 与 MOS 管相串联的电路整体 关断。

级联技术的优势在于其绕过了增强型 HEMT 的 技术难点,采用现阶段技术极为成熟的 Si 基 MOS 管 来实现增强型操作。理论上,cascode 晶体管所需的栅 驱动与传统 Si MOS 管一致,简化了驱动电路的额外 设计。但级联技术的劣势也极其明显,它会增加后续 封装技术的复杂性;在高温下,器件仍然受 Si 管性能 的限制,GaN 基 HEMT 的优势难以体现;由于 2 种晶 体管的特殊连接方式,会形成 cascode 器件的内部回 路,增加器件内部的寄生电感;由于 Si 管本身的电子 迁移率较低,级联晶体管很难在高于 1 MHz 的高频应 用场景中使用。

近年来, cascode 晶体管投入商用的产品已发展得 较为成熟。以目前 Transphorm 公司推出的 cascode 类 型的 TPH3206PSB 型号为例,它的电压应用等级在 650 V,采用 TO-220 的封装方式,其阈值电压为 2.1 V, 开态电阻为 180 mΩ,导通电流为 16 A。为了改善 Si 材料对器件整体性能的影响,研究者们也尝试用其他 材料去代替 Si。香港科技大学的研究者报道了基于 SiC 管与 GaN 基 HEMT 结合的级联结构,其优势在于 利用 SiC 材料代替 Si,进而可以提升器件的整体耐压 等级 达到 1200 V),兼容相对高频率的驱动并且具备 更低的开关损耗,具有很大的发展空间^[24]。总体来说, cascode 技术易于实现,器件稳定性高,是目前市场上 最为成熟的增强型器件方案,但其劣势同样明显,无 法完全发挥 GaN 材料的优势。

2.2.4 其他增强型器件方案

 损伤,最终得到了阈值电压为 3.3 V、饱和电流为 200 mA/mm 的器件^[26]。

除了正常的凹栅结构外,还有根据凹栅结构演变 而来的薄势垒结构的增强型 HEMT 器件。北京微电子 所使用在外延上进行调整的 GaN 外延片,其 AlGaN 势垒层仅有 4 nm,在除栅区外的沟道层上方利用 LPCVD 生长的 Si₃N₄ 来恢复 2DEG 浓度,而栅区上方 由于仅有很薄的势垒层,所以栅区下方的沟道中并未 极化出很高浓度的 2DEG。栅区暴露的 AlGaN 势垒层 使用等离子体增强原子层沉积 PEALD)的原位 RPP 技术进行界面处理,然后生长 Si₃N₄ 作为栅介质层。最 终制备的器件提高了阈值电压的稳定性和最大输出 电流^[27]。除此之外,VG-HEMT 结构也可以实现 HEMT 器件的增强型操作,它通过将器件沟道的一部分转化 为纵向,由于纵向部分并无 2DEG,所以器件在栅极零 偏压下处于关断状态。

3 器件制备

制备凹栅结构 HEMT 器件的完整工艺流程如图 3 所示,一般包括湿法清洗、光刻、干法刻蚀(湿法腐 蚀)、金属蒸镀、退火处理、薄膜沉积等工艺。

图 3 制备凹栅结构 HEMT 器件的工艺流程

主要流程有(1)准备具有相应纵向耐压能力的外延片(2)通过有机、无机湿法处理去除样片表面污染; (3)通过制造有源区来隔绝器件与器件之间的漏电; (4)制备源、漏电极,使之形成良好的欧姆接触(5)将 栅区 AlGaN 势垒层刻蚀/腐蚀到目标深度(6)沉积 栅介质层,介质层沉积之前要保证栅槽界面质量(平 整度、界面态等),介质层的目的是阻止栅极漏电、提高 栅耐压(7)选择蒸镀具有适当功函数的金属,作为栅 电极(8)器件的钝化及开口有利于器件的保存(9)制 作场板来分担器件在高压下的电场,减小高压应力下 器件性能的退化。

3.1 外延

很多 GaN HEMT 都是异质外延生长在异质衬底上的,由于 GaN 和异质衬底材料差异较大,在生长 GaN 时会产生高密度的位错、凹坑和裂纹等。为利用 MOCVD 制备出高质量的 GaN 外延结构,引入几种改进缓冲层结构的方法,从而进一步提高 GaN 基 HEMT 的性能。

GaN HEMT 在电力电子领域的应用需要具有较高的垂直击穿电压,这主要依赖于外延 GaN 的厚度,但在较厚的 GaN 表层往往会出现严重的晶圆弯曲和裂纹。为解决这一问题,对 GaN 外延技术进行了一系列的优化来提高外延质量。首先,在 Si 衬底上低温生

长 AIN 成核层,这是一种有效的通过降低生长 GaN 时的应力来提升临界厚度的方式。在 AIN 成核层上是 AlGaN 应力释放层,在应力释放层中 Al 组分随厚度 的增加而减小。再向上是 GaN 外延缓冲层。一方面,由 于外延层总厚度仍然较小,此时应力未能完全释放, 缓冲层中仍然存在许多位错和缺陷;另一方面,未经 掺杂的 GaN 呈弱 n 型,具有约 10¹⁶ cm⁻³ 的背景电子浓 度,为了提高器件的垂直耐压,一般会在缓冲层中进 行补偿掺杂,常用的掺杂剂有 Mg、Fe、C 等能够形成受 主的杂质,使得缓冲层呈现近绝缘的状态。近绝缘的 缓冲层对抑制垂直漏电、提升器件耐压具有非常重要 的作用。然而,一般引入的受主杂质多以深受主能级 存在,受主电离能高,电离十分困难,电离率较低,因此 即使 GaN 本身的背景电子浓度并不十分高,想要达到 近绝缘的补偿效果也需要掺入较高浓度的受主杂质。 缓冲层上是本征无故意掺杂的 GaN 沟道层、1 nm 左 右的 AIN 增强层和 AlGaN 势垒层。其中, AIN 增强层 会使界面更加平整,同时能够提升 2DEG 的浓度和迁 移率。AlGaN 势垒层中 Al 的质量分数一般为 0.2~0.4, 厚度一般为 20~30 nm。AlGaN 势垒层上方会有一层薄 的 GaN 帽层,这是为了提升 2DEG 的迁移率,同时减 小表面漏电。在它的上面可能会有一层为抑制电流崩 塌而生长的钝化层。

3.2 欧姆接触

欧姆接触的制备是 GaN HEMT 中不可或缺的重 要组成部分,除光刻外还需用到金属蒸镀、金属剥离、 快速热退火等工艺。理想的欧姆接触呈现电阻特性, 且电阻值越小效果越好,常常使用接触电阻来衡量器 件欧姆接触的优劣。值得注意的是(1)金属与半导体 之间必然存在功函数失配(2)AlGaN 势垒层本身的 禁带宽度很大(3)非故意掺杂的 AlGaN/GaN 异质结 掺杂浓度很低。三者共同决定了金-半接触中的半导 体一侧将形成势垒,因此如何降低该势垒是欧姆接触 制备技术的关键。

AlGaN/GaN 异质结的欧姆接触通常由 Ti/Al/Ni/Au4层金属堆叠而成。在高温退火后,底部第 一层Ti金属向下扩散,与N原子结合形成TiN,进而 降低势垒高度,同时在Al)GaN中形成高浓度的N空 位,作为浅施主杂质形成欧姆接触。第二层Al金属在 高温退火过程中会出现沸腾现象,加剧Ti金属的扩散 行为。第三层高熔点的Ni金属用于阻止下层Al与上 层Au之间的相互扩散。顶部的Au防止金属电极被氧 化。考虑到与成熟硅基生产线的兼容性,发展无金工 艺的欧姆接触是十分必要的。一些无金工艺的欧姆接 触方案如表1所示。

表1 无金工艺的欧姆接触方案

结构	金属	退火条件	接触电阻 / (Ω·mm)	参考 文献
	Ti/Al (70/180)	Ar/500 °C/3 min Ar/800 °C/30 s	1	[28]
无凹 槽	Ti/Al/Ti/TiN (25/120/20/20)	N₂⁄850 ℃/45 s	1.07	[29]
	Ti/Al/W (40/100/60)	N₂⁄875 ℃/30 s	0.93	[30]
有凹槽	Ti/Al/Ti/TiN (20/100/20/60)	N₂/550 ℃/90 s	1.25	[31]
	Ti/Al/Ti/W (20/120/20/30)	$N_2/600$ °C/120 s	1.12	[32]
	Ti/Al/W (20/100/20)	N ₂ /600 °C/60 s	0.65	[33]
	Ti/Al/W (60/100/30)	N₂⁄870 ℃/30 s	0.49	[34]
	Ti/Al (30/300)	N₂⁄850 ℃/30 s	0.5	[35]

表1中的凹槽代表欧姆接触处的凹槽,通过将 AlGaN/GaN 刻蚀掉使2DEG 直接与金属电极接触。为 了保证良好的欧姆接触性能,需要优化刻蚀工艺。表1 中接触电阻使用传统的传输线模型(TLM)来计算,该 方法计算单个欧姆接触电极的总阻值是准确的,但是 在进一步确定各电阻成分时有一定的误差。例如电极 下方半导体的方块电阻与材料本身的方块电阻,由此 利用 TLM 模型推导出的比接触电阻也具有一定的误 差。为了获取各部分准确的电阻值,大连理工大学研 究团队提出了电极对模型(EPM)以更好地解决上述 问题^[39]。

3.3 栅区工艺

3.3.1 凹槽栅结构

基于凹栅结构的增强型 HEMT 中栅区工艺尤为 重要,例如栅介质层的选择、栅区 AlGaN 势垒层的刻 蚀与刻蚀后的界面处理等。基于凹栅结构 HEMT 器件 的阈值电压和导通电阻之间的制约关系,一般情况下 栅区 AlGaN 势垒层在刻蚀后会剩余 5 nm 左右。器件 截面与栅区势垒层刻蚀后原子力显微镜 AFM) 的扫 描结果如图 4 所示。由 MOCVD 方法生长的 6 英寸 AlGaN/GaN 25 nm/4 µm) 异质晶圆,其中 AlGaN 中 Al 的质量分数为 0.27, 且在 AlGaN 表面原位生长了 20 nm 的 Si₃N₄ 作为钝化层。根据霍尔测试结果,得到 异质结界面处 2DEG 浓度大概为 9×10¹² cm⁻²,对应的 迁移率为1800 cm²/(V·s)。欧姆接触使用 Ti/Al 组合的 无金工艺,根据TLM模型测试得到其接触电阻为 $0.5 \Omega \cdot \text{mm}$ 。柵极到源极的距离 L_G、柵长度 L_G、柵极到 漏极的距离 L_{GD} 、栅宽度 W_G 分别为 4 μ m、1 μ m、16 μ m、 140 µm。栅区 AlGaN 势垒层刻蚀后剩余大约 5 nm。

栅凹槽结构的 MIS-HEMT 可以获得更高的阈值 电压和更大的栅极击穿电压。但由于栅极凹槽较深, 同时刻蚀损伤引起 2DEG 迁移率严重下降,导致器件 开态电阻相对较高。此外,由于刻蚀后粗糙表面形成 的栅介质质量较差,栅泄漏通常很严重。迄今为止,原 子层沉积 ALD)的 Al₂O₃和 LPCVD-Si₃N₄ 是应用最广 泛的栅极介质材料。中山大学的研究者使用 Al₂O₃介 质层制备的 HEMT 器件,阈值电压为 2.5 V,栅沟道电 阻为 519 Ω/□^[37]。苏州纳米所的研究者使用 Si₃N₄ 制备 的 HEMT 器件, 击穿电压为 1162 V, 器件品质因数 (FOM)为469 MW·cm⁻²,使用电导法提取的界面态密 度为 1.4×10¹³~5.3×10¹³ eV⁻¹·cm⁻²,600 V 高漏端应力后 器件导通电阻从 2.88 mΩ·cm² 增加到 4.89 mΩ·cm^{2[38]}。 香港科技大学的研究者使用 Si₃N₄ 制备了高性能的 HEMT 器件,阈值电压为 2.37 V,同时介质层具有较 高的热稳定性、长时间的栅击穿寿命和低偏置温度不 稳定性等优势^{IIG}。然而,基于 Al₂O₃ 的 MOS 结构具有 一个相对较低的临界击穿场(5~7 MV/cm),而基于 Si₃N₄ 的 MIS 结构需要一个高温 约 780 ℃)沉积过程, 这可能会导致工艺兼容性问题,同时在薄膜中会带来 过大的应力。因此,开发更多双介质层的栅极方案和 技术是必要的。

图 4 器件截面与栅区势垒层刻蚀后原子力显微镜 AFM) 的扫描结果

将理想的叠层介质分为界面层介质和耐压层介 质进行分析。界面层介质需要考虑介质层中的电荷问 题,若介质层中的固定电荷为负电荷,在栅极不施加 偏压的情况下会对沟道中的 2DEG 有耗尽作用,从而 提升器件的阈值电压,同时,界面层介质还需要与 AlGaN 势垒层形成较低的界面态,这会进一步提升器 件的可靠性。而耐压层介质需要在电极和 AlGaN 势垒 层间形成较高的势垒,理论上需要选用与 AlGaN 材料 导带阶跃较大的介质,它可以减小器件栅极漏电,此 外还需要介质层具有较大的临界击穿电场,这会给器 件提供较大的栅驱动范围。

为了确定哪种材料更适用于界面层介质和耐压 层介质,对不同生长方式下生长的不同材料进行了电 荷以及耐压的表征,不同介质层材料性能如表2所示。 为发挥栅介质层的耐压与沟道调制作用,使用 Al₂O₃+SiON 叠层介质制作HEMT 器件^[39]。

表 2	不同	介盾員	己材料性台	Ę
1X 4	A NEL	ハルス	54/14/11.11	r.

介质层	生长技术	固定电荷密度 / (10 ¹² cm ⁻²)	介电常 数	临界击穿 电场 / (MV · cm ⁻¹)			
Si_3N_4	PECVD	小于 +2.9	7.1	12.0			
$\mathrm{Si}_3\mathrm{N}_4$	MOCVD	+7.0	8.6	13.3			
SiON	PECVD	+5.7	6.5	13.0			
Al_2O_3	ALD	-2.9	9.5	7.2			

以介质层作为变量制备了 2 个样品,样品 A 为 30 nm SiON,样品 B 为 10 nm Al₂O₃+20 nm SiON 其中 Al₂O₃作为界面层介质,更靠近沟道)。2 个样品的转移 特性曲线如图 5 所示(其中 V_{DS}、I_{DS}、V_{GS}分别为漏端电 压、漏端电流、栅端电压),从图 5 可以观察到 2 个器件 的电流开关比均大于 10⁸,在栅极电压从-6 V 提高到 10 V 的过程中,栅极泄漏电流没有明显的上升趋势, 证明介质没有发生击穿。经测量发现,样品 B 阈值电 压的滞回小于 10 mV,说明其界面态浓度很低。另外, 样品 A 和 B 的 亚阈值摆幅分别 为 515 mV/dec 和 172 mV/dec。样品 B 所对应的 亚阈值摆幅较小,一方 面是因为 Al₂O₃的介电常数大于 SiON,另一方面是因 为 Al₂O₃的介电常数大于 SiON,另一方面是因 为 Al₂O₃的介电常数大于 SiON/AlGaN 界面更 低。可以明显观察到 A、B 2 个样品的阈值电压差异较 大,样品 B 的阈值电压为 0.8 V,实现了增强型操作。

图 5 2 个样品的转移特性曲线

虽然使用该方案的器件实现了增强型操作,但阈 值电压仍较小,在实际电路应用中会出现误开启的操 作,可以在栅介质层沉积之前使用界面处理方式来改 善栅界面性能,进一步提升器件的阈值电压。

研究发现,栅介质层 (Al) GaN 界面处通常存在 10¹³ cm⁻²·eV⁻¹ 的高密度界面态,这会引起严重的栅漏 电和阈值电压的不稳定性,因此,在栅介质层沉积之 前有必要引入界面处理技术来修复由刻蚀引入的界面态。香港科技大学的研究者使用 NH₃-Ar-N₂ 界面处理技术制备了 HEMT 器件,该技术可以有效地去除界面原生氧化物,同时在三族氮化物表面形成类单晶氮化物界面层,器件的亚阈值摆幅为 64 mV/dec,阈值电压的滞回为 0.09 V,同时还具有较低的 D(1×10¹²~6×10¹² cm⁻²·eV⁻¹)¹⁹。西安电子科技大学使用 N₂O 进行界面处理,制备的器件阈值电压为 1.5 V,亚阈值摆幅为70 mV/dec¹¹⁴。这说明栅槽界面处理是可以改善器件性能的。

基于上述 Al₂O₃+SiON 叠层 栅介质, 在栅槽 AlGaN 势垒层刻蚀后引入氧和氟混合等离子体界面 处理来改善器件性能^[35]。使用混合等离子体界面处理 后器件的转移特性如图 **6** a)所示,由于势垒层表面固 定了带负电荷的氟离子, 阈值电压正向漂移了 2.0 V 左右,达到了 2.5 V。根据阈值电压的差异,可以粗略推 断出氟离子的浓度约为 1.6×10¹² cm⁻²,2 个器件的开关 电流比均达到了 10°,并且在-4~12 V 的栅极扫描范围 内保持 10⁻⁷ mA/mm 的低栅极泄漏电流。混合等离子 体处理后器件的亚阈值摆幅为 188 mV/dec,比对照组 减小了 110 mV/dec,表明该界面处理方案确实有助于 降低栅极表面陷阱浓度。有无混合等离子体处理器件 的栅耐压特性如图 **6** b)所示,与未使用界面处理的器 件相比,使用混合等离子体处理方案的器件展现出更 好的栅耐压 26 V)。

3.3.2 p-GaN 栅结构

在 p 型栅结构中, 一般选择使用 p-GaN 作为插入 层,这也是目前最成熟的工艺。其典型特征是在栅极 下方插入一层 p-GaN 层,其作用是抬高 AlGaN/GaN 界面处的导带能级,调制此类器件阈值电压的方法在 于改变 p-GaN 的掺杂浓度,或者调整栅区下方 AlGaN 势垒层的厚度,p-GaN结构栅下能带如图7所示。当应 用 p-GaN 栅极时,相当于制备了一个栅极注入晶体管 (GIT),来降低随着栅极电流而增加的导通电阻。事实 上,p-GaN 的高受体浓度是保持该类二极管栅极特性 所必需的,而这也可以通过在栅极下面引入基于 NiOx 的插入层来实现。这种结构利用金属与 p-GaN 间较高 的势垒减小栅漏电并提供正向阈值电压。该技术由丰 田公司在 2007 年首次提出, 现在已发展成为主流商用 技术之一,如 Panasonic 和 EPC 等已推出多款基于 p 型栅结构的增强型器件,但它们的阈值电压一般都小 于2V,在实际电路应用中会由于过充等现象造成器 件损坏。

图 7 p-GaN 结构栅下能带^[40]

p-GaN 栅结构的器件在外延 AlGaN 上生长的是 p型 GaN,可以通过干法刻蚀或氢等离子体处理制备 出所需的 p-GaN 插入层(1) 对器件进行氢等离子体 处理,将 p-GaN 转化为高阻 GaN (HR-GaN)(2)通过 干法刻蚀将除栅下区域的 p-GaN 刻蚀掉(2种方法在 实施时均需使用光刻胶保护栅下区域的 p-GaN)。其他 工艺与制备凹槽栅结构器件相差不大。

近年来,对于该类型器件的研究越来越多地集中 在可靠性方面,如器件在反向续流应力下的表现、应 力测试中陷阱俘获与释放电子的机制、再生长 p-GaN 帽层结构中栅极的退化现象等。然而,由栅极电压过 大所引起的栅极电流泄漏问题并未得到有效解决,同 时栅控能力减弱、寄生电容增加等问题也依然存在。

3.3.3 氟化栅结构

具有氟化栅结构的增强型器件与其他方案在栅 区的工艺不同,该方案是在蒸镀栅电极前通过高能离 子注入机对栅下势垒层注入氟离子。由于氟离子具有 高的电负性,在势垒层中会形成带负电的固定电荷, 相当于形成了一个附加势垒。从能带角度分析,它会 提升栅下的势垒高度,从而得到较高的阈值电压,同 时减小栅极泄漏电流。该方法可以通过控制氟离子的 处理时间和剂量得到较高的阈值电压,同时结合凹栅 结构中的介质层能够更好地抑制栅漏电;但由于势垒 层中注入氟离子会引入缺陷,这些缺陷会降低 2DEG 迁移率,导致器件输出电流减小,同时会使器件阈值 电压的稳定性变差。此外,在大面积晶圆上制作器件 时,使用此方法很难控制器件阈值电压的均匀性。

3.4 场板和钝化的设计

对于电源开关应用,GaN HEMT 通常工作在第一 象限 正偏置和正电流)和第三象限 负偏置和负电 流)^[41]。在第一象限工作时,要求器件在关态期间阻止 高漏端偏置(例如用于消费类电子设备适配器的 600 V),并在开态期间具有低的导通电阻。基于 GaAs HEMT 的研究经验,栅靠近漏极一侧的强电场是导致 关态击穿和电流崩塌的主要原因^[42]。因此,需要通过器 件结构设计来解决关态高压下的强电场问题,如局部 氟等离子体处理和局部 p 型掺杂,但场板的设计仍然 是主要的方法。

当 HEMT 器件从高压关断切换到开启状态时,场 板的电场调控有助于抑制电流崩塌和增加动态电阻。 在高压关断期间,强电场会加速电子向半导体表面移 动。随后电子被捕获并产生额外的电场,在器件切换 到导通期间耗尽 2DEG。加上更好的钝化层,场板可以 降低电场,避免电子加速。通常,用于增加击穿电压的 场板设计也可用于抑制电流崩塌。栅极场板和源极场 板的优化组合可以同时增加器件的击穿电压,并抑制 电流崩塌。

场板的设计在调控电场的同时,也会引入寄生电 容,这可能会损害器件的高频和开关性能。因此,业界 提出了几种独特的场板结构以减少寄生电容,例如浮 空场板和空气桥场板。倾斜形状的场板也可用于调控 电场的分布,并提高器件的击穿电压。

4 结束语

本文介绍了 GaN 基 HEMT 器件的几种主流实现 方案。具有凹栅结构、p-GaN 插入层结构和 cascode 结 构的器件是最具有应用前景的技术。在阐述了 HEMT 器件的工作原理后,本文阐述了 GaN 基 HEMT 器件 的一系列最新研究进展,包括材料外延和器件关键制 造技术等。另外,本文基于凹栅结构的 E-mode HEMT 技术路线,重点讨论了栅槽刻蚀后的界面处理和栅介 质层工艺以及其对 HEMT 器件的性能影响。未来,纵 向垂直结构的 GaN 功率器件是重要发展方向,目前高 性能垂直结构的 GaN 基功率器件的发展方向还聚焦 于降低衬底成本、提高衬底晶体和外延结构质量以及 高效离子注入电隔离等方面。而横向结构 GaN HEMT 的研究重点在于大面积 超过8英寸)外延质量和器件 工艺可靠性,业界在向更高耐压 大于 1000 V)应用等 级、中低压应用中更高功率密度以及与传统 Si CMOS 工艺的兼容等方面努力。新的制造工艺必须考虑工艺 的稳定性和器件的可靠性。随着设备技术的创新、材 料和器件工艺质量的提升,GaN 功率器件的发展与应 用将进一步加速。

参考文献:

- SIMON J, PROTASENKO V, LIAN C X, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 60-64.
- [2] LU Z B, LI C M, ZHU A K, et al. Medium voltage softswitching DC/DC converter with series-connected SiC MOSFETs[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1451-1462.
- [3] HAN L B, LIANG L, KANG Y, et al. A review of SiC IGBT: Models, fabrications, characteristics, and applications
 [J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2080-2093.
- [4] KIM N, YU J S, ZHANG W J, et al. Current trends in the development of normally-off GaN-on-Si power transistors and power modules: A review [J]. Journal of Electronic Materials, 2020, 49(11): 6829-6843.
- [5] 沈波, 唐宁, 杨学林, 等. GaN 基半导体异质结构的外延
 生长、物性研究和器件应用[J]. 物理学进展, 2017, 37(3):
 81-97.

[6] LIN S X, WANG M J, SANG F, et al. A GaN HEMT

structure allowing self-terminated, plasma-free etching for high-uniformity, high-mobility enhancement-mode devices [J]. IEEE Electron Device Letters, 2016, 37(4): 377-380.

- [7] WANG H Y, WANG J Y, LI M J, et al. 823-mA/mm drain current density and 945-mW/cm² Baliga's figure-of-merit enhancement-mode GaN MISFETs with a novel PEALD-AIN/LPCVD-Si₃N₄ dual-gate dielectric [J]. IEEE Electron Device Letters, 2018, 39(12): 1888-1891.
- [8] XU Z, WANG J Y, CAI Y, et al. Enhancement mode (E-mode) AlGaN/GaN MOSFET with 10⁻¹³ A/mm leakage current and 10¹² on/off current ratio[J]. IEEE Electron Device Letters, 2014, 35(12): 1200-1202.
- [9] ASUBAR J T, KAWABATA S, TOKUDA H, et al. Enhancement-mode AlGaN/GaN MIS-HEMTs with high V_{th} and high I_{dmax} using recessed-structure with regrown AlGaN barrier[J]. IEEE Electron Device Letters, 2020, 41(5):693-696.
- [10] YAO Y, HE Z Y, YANG F, et al. Normally-off GaN recessed-gate MOSFET fabricated by selective area growth technique[J]. Applied Physics Express, 2014, 7(1): 016502.
- [11] HE L, LI L A, QUE T T, et al. Impact of dislocation pits on device performances and interface quality degradation for E-mode recessed-gate Al₂O₃/GaN MOSFETs[J]. Journal of Alloys and Compounds, 2021, 854: 157144.
- [12] IM K S. Mobility fluctuations in a normally-off GaN MOSFET using tetramethylammonium hydroxide wet etching[J]. IEEE Electron Device Letters, 2021, 42(1):18-21.
- [13] MA Y W, XIAO M, DU Z H, et al. Tri-gate GaN junction HEMT[J]. Applied Physics Letters, 2020, 117(14): 143506.
- [14] HE Y L, HE Q, MI M H, et al. High breakdown electric field MIS-free fully recessed-gate normally off AlGaN/ GaN HEMT with N₂O plasma treatment[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 2163-2170.
- [15] LI M J, WANG J Y, WANG H Y, et al. Improved performance of fully-recessed normally-off LPCVD SiN/GaN MISFET using N₂O plasma pretreatment[J]. Solid-State Electronics, 2019, 156(1): 58-61.
- [16] HUA M Y, ZHANG Z F, WEI J, et al. Integration of LPCVD-SiN_x gate dielectric with recessed-gate E-mode GaN MIS-FETs: Toward high performance, high stability and long TDDB lifetime [C]// 2016 IEEE International Electron Devices Meeting (IEDM), 2016.
- [17] HUA M Y, CAI X B, YANG S, et al. Enhanced gate reliability in GaN MIS-FETs by converting the GaN channel into crystalline gallium oxynitride[J]. ACS Applied

Electronic Materials, 2019, 1(5): 642-648.

- [18] HUA M Y, WEI J, TANG G F, et al. Normally-off LPCVD-SiN_x/GaN MIS-FET with crystalline oxidation interlayer [J]. IEEE Electron Device Letters, 2017, 38(7): 929-932.
- [19] CHEN K J, YANG S, TANG Z K, et al. Surface nitridation for improved dielectric/ III -nitride interfaces in GaN MIS-HEMTs[J]. Physica Status Solidi A-Applications and Materials Science, 2015, 212(5): 1059-1065.
- [20] UEMOTO Y, HIKITA M, UENO H, et al. Gate injection transistor (GIT)-a normally-off AlGaN/GaN power transistor using conductivity modulation [J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3393-3399.
- [21] GRECO G, IUCOLANO F, FRANCO D S, et al. Effects of annealing treatments on the properties of Al/Ti/p-GaN interfaces for normally off p-GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2016, 63(7): 2735-2741.
- [22] POSTHUMA N E, YOU S, LIANG H, et al. Impact of Mg out-diffusion and activation on the p-GaN gate HEMT device performance[C]// International Symposium on Power Semiconductor Devices and ICs, 2016: 95-98.
- [23] LUKENS G, HAHN H, KALISCH H, et al. Self-aligned process for selectively etched p-GaN-gated AlGaN/GaNon-Si HFETs[J]. IEEE Transactions on Electron Devices, 2018, 65(9): 3732-3738.
- [24] WANG Y R, LYU G, WEI J, et al. Characterization of static and dynamic behavior of 1200 V normally off GaN/SiC cascode devices[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10284-10294.
- [25] CAI Y, ZHOU Y G, CHEN K J, et al. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoridebased plasma treatment[J]. IEEE Electron Device Letters, 2005, 26(7): 435-437.
- [26] ZHANG Z L, FU K, DENG X G, et al. Normally off AlGaN/GaN MIS-high-electron mobility transistors fabricated by using low pressure chemical vapor deposition Si₃N₄ gate dielectric and standard fluorine ion implantation [J]. IEEE Electron Device Letters, 2015, 36(11): 1128-1131.
- [27] GUO F Q, HUANG S, WANG X H, et al. Suppression of interface states between nitride-based gate dielectrics and ultrathin-barrier AlGaN/GaN heterostructure with in situ remote plasma pretreatments [J]. Applied Physics Letters, 2021, 118(9): 093503.
- [28] EL-ZAMMARA G, YVON A, KHALFAOUI W, et al. A simple non-recessed and Au-free high quality ohmic contacts on AlGaN/GaN: The case of Ti/Al alloy[J]. Materials

Science in Semiconductor Processing, 2018, 78:107-110.

- [29] SUN H, LIU M H, LIU P, et al. Optimization of Au-free ohmic contact based on the gate-first double-metal AlGaN/GaN MIS-HEMTs and SBDs process [J]. IEEE Transactions on Electron Devices, 2018, 65(2): 622-628.
- [30] HUANG H L, LIANG Y C, SAMUDRA G S, et al. Au-free normally-off AlGaN/GaN-on-Si MIS-HEMTs using combined partially recessed and fluorinated trap-charge gate structures [J]. IEEE Electron Device Letters, 2014, 35 (5): 569-571.
- [31] SHRIKI A, WINTER R, CALAHORRA Y, et al. Formation mechanism of gold-based and gold-free ohmic contacts to AlGaN/GaN heterostructure field effect transistors[J]. Journal of Applied Physics, 2017, 121(6): 065301.
- [32] ZHANG J H, HUANG S, BAO Q L, et al. Mechanism of Ti/Al/Ti/W Au-free ohmic contacts to AlGaN/GaN heterostructures via pre-ohmic recess etching and low temperature annealing [J]. Applied Physics Letters, 2015, 107(26): 262109.
- [33] VAN HOVE M, BOULAY S, BAHL S R, et al. CMOS process-compatible high-power low-leakage AlGaN/GaN MISHEMT on silicon [J]. IEEE Electron Device Letters, 2012, 33(5): 667-669.
- [34] LEE H S, LEE D S, PALACIOS T. AlGaN/GaN highelectron-mobility transistors fabricated through a Au-free technology[J]. IEEE Electron Device Letters, 2011, 32(5): 623-625.
- [35] SUN N, HUANG H L, SUN Z H, et al. Improving gate reliability of 6-in E-mode GaN-based MIS-HEMTs by employing mixed oxygen and fluorine plasma treatment[J]. IEEE Transactions on Electron Devices, 2022, 69 (1): 82-87.
- [36] SUN Z H, HUANG H L, LIU Y H, et al. A novel analytical model for ohmic contacts to planar devices: Theoretical

design and experimental verification[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 299-306.

- [37] ZHANG J L, HE L, LI L, et al. High-mobility normally off Al₂O₃/AlGaN/GaN MISFET with damage-free recessedgate structure [J]. IEEE Electron Device Letters, 2018, 39 (11): 1720-1723.
- [38] ZHANG Z L, YU G H, ZHANG X D, et al. Studies on high-voltage GaN-on-Si MIS-HEMTs using LPCVD Si₃N₄ as gate dielectric and passivation layer [J]. IEEE Transactions on Electron Devices, 2016, 63(2): 731-738.
- [39] SUN Z H, HUANG H L, WANG R H, et al. Improving performances of enhancement-mode AlGaN/GaN MIS-HEMTs on 6-inch Si substrate utilizing SiON/Al₂O₃ stack dielectrics[J]. IEEE Electron Device Letters, 2020, 41(1): 135-138.
- [40] GIUSEPPE G, FERDINANDO I, FABRIZIO R. Review of technology for normally-off HEMTs with p-GaN gate [J]. Materials Science in Semiconductor Processing, 2018, 78: 96-106.
- [41] BOUTROS K S, RONGMING CHU, HUGHES B. GaN power electronics for automotive application [C]// 2012 IEEE Energytech, 2012.
- [42] FRENSLEY W R. Power-limiting breakdown effects in GaAs MESFET's [J]. IEEE Transactions on Electron Devices, 1981, 28(8): 962-970.

作者简介:

黄火林(1982—),男,福建福州 人,博士,教授,博士生导师,主要研 究方向为宽带隙半导体功率器件和 传感器芯片研制。